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Abstract

Catcher bearings (CBs) provide backup protection for rotating machines with active magnetic bearings
(AMBs). The CBs are required in the event of an AMB failure or high transient loads. Numerical
simulations of a rotor drop on CBs in flywheel energy storage system are conducted with a detailed CB
model which includes a Hertzian load–deflection relationship between mechanical contacts, speed-and-
preload-dependent bearing stiffness due to centrifugal force, and a Palmgren’s drag friction torque. The
transient simulation results show the rotor shaft response variations with the design parameters: shaft/
bearing friction coefficients, axial preload, support damping of damper liner, and side loads from magnetic
bearings. The results reveal that friction coefficients, support damping, and side loads are critical
parameters to satisfy CB design objectives and prevent backward (super) whirl.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Active magnetic bearings (AMBs) have been increasingly used in many rotor dynamic
applications because they have several advantages over conventional bearings: no lubrication
required, no mechanical friction loss, and adjustable bearing characteristics such as stiffness and
damping. In an AMB system, the rolling-element CBs are necessary to protect the MB, stator, and
stationary components along the shaft.
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The paper of Gelin et al. [1] included numerical simulation and landing tests of an industrial
centrifugal compressor with a Coulomb friction contact force ignored in the numerical model.
Ishii and Kirk [2] presented the numerical results of the transient response of a flexible rotor drop,
which showed an optimum damping can be chosen to prevent destructive backward whirl;
however, the rotor model they used did not include gyroscopic effects. They [3] later refined the
initial analysis [2] and included features that more closely match the conditions during an actual
rotor drop. Fumagalli et al. [4] classified the touchdown process into four distinct phases of
motion—free fall, impact, sliding, and rolling—and investigated the influences of such parameters
as air gap, friction coefficient, and damping on the impact dynamics. Foiles and Allaire [5] also
numerically analyzed the effects of parameters for non-linear models on two types of rotors:
generator or turbine rotor and centrifugal compressor rotor. Their work did not include the
effects of support damping and stiffness.
Kirk et al. [6] performed experimental rotor drop tests for balanced and unbalanced conditions.

The authors concluded that a major influence on the transient response is the balance level of the
rotor. In Part II [7], a finite element code for the rotor and bearing system was developed to
perform stability analysis and unbalance response. They compared the analytical and
experimental results for the damped critical speeds and unbalance response. Swanson et al. [8]
showed the test results for 5 CB configurations in which 38 drops with varying rotor speed,
unbalance amplitude and location were performed. Tessier [9] described the development, testing,
and delevitation tests of a flexible compressor rotor which is 2m in length and 360 kg in weight.
The zero clearance auxiliary bearing (ZCAB) was introduced by Chen et al. [10]. The tests verified
that the possibility of a backward whirl of a rotor can be reduced due to clearance elimination and
the ZCAB damping.
In Ref. [11], steady state behavior was numerically investigated and analyzed for various

parametric configurations: rotor imbalance, support stiffness and damping. Ecker [12] presented
the steady state numerical results for a rigid rotor with imbalance rotor on a CB fixed to the
bearing housing. The most important point of steady state behavior is whether or not a rotor
enters into a full whirl in the CB clearance. Feeny [13] explored the stability of cylindrical and
conical whirls in a perfectly balanced and rigid rotor on rigid retainer bearings. Maslen and
Barrett [14] derived whirl conditions of a circularly isotropic rotor and CB support along with the
test results of a commercial compressor rotor with CBs.
The inner race speed and axial preload-dependent bearing stiffness is an important issue in

high-speed bearing modelling because bearing stiffness is determined according to these two
parameters. Most papers on the numerical analysis of CBs have utilized simple simulation models,
while non-CB papers utilize more sophisticated ball bearing models. For instance, a rolling
element bearing stiffness matrix depending on axial preload and inner race speed was calculated
analytically, using an iterative Newton–Raphson procedure in Ref. [15] for non-CB applications.
Similarly, Shin [16] showed that axial and radial stiffness decreases substantially as inner race
spinning speed increases. He later developed a bearing model including thermal expansion of
bearing components in Ref. [17]. These two authors used different approaches but obtained
similar results of speed-dependent radial and axial stiffness of a bearing.
In this paper, a detailed CB model is developed based on the same method as Ref. [15] including

centrifugal force on balls, Hertzian contact load–deflection relationship, inner race speed-and-
axial preload-dependent stiffness, and power loss due to friction force on inner race and
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Palmgren’s drag torque. The CB model provides an accurate bearing stiffness accounting for axial
preload and inner race speed. A variety of parametric studies such as axial preloads, friction
coefficients, support dampings, and side loads from MBs have been performed. The numerical
results are compared using 15 performance indices to identify improved CB design features.

2. Rotor drop simulation model

A rigid vertical rotor shaft with a rigid motor and a flywheel connected to it by flexible hubs is
depicted in Fig. 1. The hubs are assumed to be torsionally rigid. The integrated shaft is modelled
with 16 degrees of freedom (d.o.f.) including cross-coupled stiffness and gyroscopic moments. The
shaft has three translational and three rotational motions, while the flywheel and motor have
three translational and two rotational motions, each. The flywheel and motor generate unbalance
forces with 90� phase difference, and the rotor is assumed to be well balanced. Fig. 2 shows a
bottom view of the top CB, which is modelled as a 5 d.o.f. system. The inner and outer races each
have two transverse motions in the radial direction and the inner race has one spin motion. The
bottom CB is modelled as a 7 d.o.f. system. The inner and outer races have two translational
motions in the radial direction and one axial motion, and the inner race has one spin motion.
Fig. 3 shows the axial rotor drop model. The CBs are modelled as back-to-back duplex pairs at
each end. Duplex bearings are matched pairs of bearings with built-in means of preloading. The
inner or outer ring faces of these bearings have been selectively relieved a precise amount called
the preload offset. Duplexing is used to greatly increase radial and axial rigidity. Duplex bearings
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Fig. 1. Energy storage flywheel supported on MBs and CBs.
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Fig. 2. Detailed catcher bearing model.

Fig. 3. Axial catcher bearing model.
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can withstand bidirectional loads (DB: back to back and DT: face to face mounting) or heavy
unidirectional loads (DT mounting). Other advantages include easy assembly and minimum
runout. The frame of reference ðO;X ;Y Þ is fixed to the machinery frame. The geometric centers of
the rotor and bearing inner race are Or and Ob; respectively. ðx; yÞ is the location of Or in the
frame of reference while ðxb; ybÞ is the location of Ob in the frame of reference. The stiffness Kc

represents the non-linear Hertzian contact forces [18] between the rotor and inner race, and Kb

denotes the stiffness which depends on inner race speed and preload in Ref. [16].
The terms Ks and Cs are the stiffness and damping coefficients of the damper liner. The same

duplex pairs CBs are modelled at the top and bottom. Normal ðFnÞ and tangential (Ft; friction)
contact forces exist between the spinning rotor and inner race. In the simulation scenario, the
shaft drops onto the bottom CB by gravity, simultaneously moving to the CBs in X and Y
directions. The rotational speed of the bottom CB inner race is accelerated by the axial and radial
contacts with the shaft, while the shaft speed is decelerated by the contacts. The terms ðKma;CmaÞ
and ðKfa;CfaÞ are axial stiffness and damping coefficients of the hubs for the motor and flywheel,
respectively. The term Fcz is the normal contact force from the axial drop of the shaft onto the
inner race of the bottom CB and ddrop is the initial drop height. The stiffness and damping
coefficients between inner and outer races are represented as Kba and Cba: The terms Ksa and Csa

are the stiffness and damping coefficient of the axial support system.
From Fig. 2, the angle at the contact between the rotor and CB is

aj ¼ tan�1 yj � ybj

xj � xbj

� �
; j ¼ 1; 2; ð1Þ

where subscripts 1, 2 represent the top and bottom bearings, respectively.
When the rotor shaft hits the CB, a non-linear normal contact force Fn occurs and is given by

Hertzian theory [18] as

Fnj ¼
Ksn

j ; sjZ0;

0; sj!0;

(
ðj ¼ 1; 2Þ; ð2Þ

where sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xbjÞ

2 þ ðyj � ybjÞ
2

q
� c and the constant K depends on both the material property

and contact geometry, c is the radial clearance between the shaft and the CB, and n is dependent on
the type of contact: n ¼ 10=9 for line contact and 3/2 for point contact. The friction force is

Ftj ¼ mdFnj; j ¼ 1; 2; ð3Þ

as long as slipping exists at the contact point, where md is the dynamic friction coefficient.
A rolling condition is applied to the model when the tangential velocity of the inner race reaches

that of the shaft at the contact point. The rotational equations of motion (EOM) for the rotor,
and the inner races of the top and bottom CBs are

Ip
.yr ¼ �ðFt1 þ Ft2ÞRr � Tza; ð4Þ

Ipb
.yi1 ¼ Ft1Rb � Td1; ð5Þ

Ipb
.yi2 ¼ Ft2Rb � Td2 þ Tza; ð6Þ

where Tza is the driving torque from axial contact between the shaft and bottom CB, Tdjðj ¼ 1; 2Þ
is the drag torque, Rr and Rb denote the radii of the rotor shaft and inner race, and Ip and Ipb
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denote the polar moments of inertia of the total flywheel system and inner race, respectively.
These inertias are referenced to their mass centers. Three possible rolling conditions are
considered:
(1) Only the top CB satisfies the rolling condition:

Rr
’yr ¼ Rb

’yi1: ð7Þ

By arranging Eqs. (4) and (5) and using the rolling condition (7), the friction force at the top CB
becomes

Ft1 ¼
Rb=Ipb � Td1 � Rr=Ip � ðFt2Rr þ TzaÞ

R2
r=Ip þ R2

b=Ipb

; where Ft2 ¼ mdFn2: ð8Þ

(2) Only the bottom CB satisfies the rolling condition:

Rr
’yr ¼ Rb

’yi2: ð9Þ

By arranging Eqs. (4) and (6) and using the rolling condition (9), the friction force at the bottom
CB becomes

Ft2 ¼
Rb=Ipb � ðTd2 � TzaÞ � Rr=Ip � ðFt2Rr þ TzaÞ

R2
r=Ip þ R2

b=Ipb

; where Ft1 ¼ mdFn1: ð10Þ

(c) Both CBs simultaneously satisfy the rolling condition:

Rr
’yr ¼ Rb

’yi2 ¼ Rb
’yi1: ð11Þ

By arranging Eqs. (4)–(6), and using the rolling condition (11), the friction forces become

Ft1

Ft2

( )
¼

R2
r

Ip

þ
R2

b

Ipb

R2
r

Ip

R2
r

Ip

R2
r

Ip

þ
R2

b

Ipb

2
6664

3
7775
�1

Rb

Ipb

Td1

Td2

" #
� Tza

Rr

Ip

Rr

Ip

þ
Rb

Ipb

2
664

3
775

8>><
>>:

9>>=
>>;: ð12Þ

Termination or continuation of rolling contact is determined by Eqs. (8), (10) and (12), i.e.,

(a) If Ftj > msFnj; then the shaft slides again, i.e., Ftj ¼ mdFnj ; j ¼ 1; 2:
(b) If FtjomsFnj; then the shaft keeps rolling on the CB.

The axial normal contact force Fcz is determined from Fcz ¼ KcD for D > 0; Fcz ¼ 0 for Do0;
where Kc is the contact stiffness from Timoshenko [19] and equals

Kc ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðr22 � r21Þ=

q
0:96ð1� n2Þ;

where D ¼ ðzr2ziÞ � ddrop is the axial contact deflection between the CB inner race and the shaft.
The parameter r1 is the bore radius and r2 is the relieved face radius of the CB. The torque Tza is
derived from

Tza ¼
Z

r dFt;
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where Ft ¼ mdFcz ¼ mdPcz A and A is the axial contact area on the CB. Fcz is the axial normal
contact force and md is the coefficient of friction.

Tza ¼
Z r2

r1

Z 2p

0

rðmdPczr dy drÞ ¼
Z r2

r1

Z 2p

0

r2mdFcz=A dy dr

¼
2pmd

A
Fcz

ðr32 � r31Þ
3

:

Since A ¼ pðr22 � r21Þ;

Tza ¼
2mdðr

3
2 � r31Þ

3ðr22 � r21Þ
Fcz: ð13Þ

The friction torque acting on the CB is composed of two parts. The first part Tdl is due to applied
loads and the second part Tdn is the viscous friction torque, which is independent of loads and
depends primarily on the characteristics and quantity of lubricant in the bearings.
The first type of torque is determined from an empirical evaluation by Palmgren, as cited in

Ref. [18]:

Tdl ¼ f1Fbdm; ð14Þ

where f1 is a factor depending on bearing design and relative bearing load, and dm is the pitch
diameter of the bearing. The force Fb depends on the magnitude and direction of the applied
loads. For rolling element bearings, f1 varies from 0.0001 to 0.00055.
Palmgren also developed a formula for the second type of friction torque:

Tdn ¼ 10�7foðnonÞ2=3d3
m for non > 2000; ð15Þ

Tdv ¼ 160� 10�7fod3
m for nonp2000; ð16Þ

where fo is a factor depending on the type of bearing and the method of lubrication. For grease
packed ball bearings (normally used in CBs) this factor ranges from 1.5 to 5. The parameter no is
the kinematic viscosity of the lubricant in centistrokes and n is the inner race angular velocity in
r.p.m. The total friction drag torque Td for a bearing is the sum of the friction drag torques.
Heat energy is produced by sliding and by the internal drag friction torque. Excessive transient

heating may damage the bearing so that calculation of heat energy provides an important
performance parameter for CB design. The thermal power loss is calculated as follows:
1. Due to drag torque, PL1j ¼ Tdj

’yij; j ¼ 1; 2; where Tdj ¼ Tdlj þ Tdnj:
2. Due to sliding at contact points, PL2j ¼ ~FF tj � ~VV relj; where ~VV rel is the tangential relative

velocity between the inner race and rotor at the contact point. For the j ¼ 2 case (bottom
bearing), the power loss due to axial sliding, Tzaðor � ’yi2Þ; is added to PL2j: Let the contact point
on the rotor be p and that on the inner race be p0; then

~VV p ¼ ~VV or
þ Rr

’yr~aat

¼ ð ’x cos aþ ’y sin aÞ~aan þ ð� ’x sin aþ ’y cos aÞ~aat þ Rr
’yr~aat;

~VV p0 ¼ ~VV ob
þ Rb

’yi~aat

¼ ð ’xb cos aþ ’yb sin aÞ~aan þ ð� ’xb sin aþ ’yb cos aÞ~aat þ Rb
’yi~aat;
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where ~aan and ~aat are unit vectors in the normal and tangential directions at the contact point,
respectively (see Fig. 2).

since ~VV rel ¼ ~VV p � ~VV p0 ;

PL2 ¼ ~FF t � ~VV rel ¼ FtðRror � Rb
’yiÞ þ Ft½ð ’xb � ’xÞ sin aþ ð ’y � ’ybÞ cos a�:

The total power loss is

PLtotal ¼
X2
j¼1

ðPL1j þ PL2jÞ: ð17Þ

The corresponding heat energy is then obtained by integrating the total power loss:

Heat energy ¼
Z t

0

PLtotalðtÞ dt: ð18Þ

3. Bearing model validation

Accurate prediction of bearing stiffness is crucial in the rotor drop simulation because the
bearing stiffness is significantly influenced by the ball centrifugal force when the inner race spin
speed is accelerated by the contact force. The bearing stiffness depends on axial preload and the
inner race speed and is determined by a bearing Jacobian matrix [15] or stiffness matrix for a 3D
bearing model with centrifugal force. A brief explanation on how to obtain the bearing stiffness
using this analysis will follow along with a comparison of results with data from another journal
paper and a commercial bearing analysis code. Fig. 4 shows a cross-section of the ball bearing
with reference coordinates. The inner race is externally loaded by the force vector fFg with
components in its coordinate system as shown in Fig. 5(a):

fFgT ¼ fFx;Fy;Fz;Mx;MyÞ:
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Fig. 4. Cross-section of ball bearing with reference coordinate.
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The corresponding displacement vector fXg for the same reference point is

fXgT ¼ fx; y; z; yx; yyg:

Fig. 5(b) shows that the inner race cross-section at a ball is loaded by the contact force vector fQg
at the reference point p (inner groove center), which has a displacement vector fug: The parameter
f is calculated such that the r2z plane passes through the center of the ball

fQgT ¼ fQr;Qz;Mg; fugT ¼ fur; uz; yg:

Assuming the displacements are small, the vectors for different reference points are related by the
transformation matrix T:

fug ¼ TfXg; fQg ¼ Tff g; ð19Þ

where

T ¼

cosf sin f 0 �zp sin f zp cosf

0 0 1 rp sin f �rp cosf

0 0 0 �sin f cosf

2
64

3
75

and ff g is an equivalent force vector at the inner race reference point with

ff gT ¼ ffx; fy; fz;mx;myg:

The load equilibrium equations for the inner race are

fFg þ
Xn

j¼1

T 0fQgj ¼ f0g; ð20Þ

where n is number of balls.
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Fig. 5. (a) Ball bearing coordinate system with bearing loads and displacements, (b) inner race cross-section coordinate

system with contact loads and displacements.
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The ball load equilibrium equations including the centrifugal force Fc are derived from Fig. 6.

Fr

Fz

( )
¼

Qi cos ai � Qe cos ae þ Fc

Qi sin ai � Qe sin ae

( )
¼

0

0

( )
; ð21Þ

where Qi;e are contact loads and ai;e are contact angles.
Since Eqs. (20) and (21) are highly non-linear, the unknown fXg and ball center location fvg

can be solved by a Newton–Raphson method. The linearized form of Eq. (20) is

fFg þ
Xn

j¼1

ff gj þ
Xn

j¼1

T 0
j

@fQg

@fugT

� �
j

TjfDXg ¼ f0g: ð22Þ

Eq. (21) is linearized as

Fr

Fz

( )
þ

@Fr

@vr

@Fr

@vz

@Fz

@vr

@Fz

@vz

2
664

3
775 Dvr

Dvz

( )
¼

0

0

( )
: ð23Þ

At convergence, the bearing stiffness matrix is represented by

@fFg

@fdgT

� �
¼ �

Xn

j¼1

T 0
j

@fQg

@fugT

� �
j

Tj: ð24Þ

The radial and axial stiffness are determined from

Radial stiffness : KXX ¼ �
Xn

j¼1

T 0 @fQg

@fugT

� �
Tð1; 1Þ: ð25Þ

Axial stiffness : KZZ ¼ �
Xn

j¼1

T 0 @fQg

@fugT

� �
Tð3; 3Þ:
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Fig. 6. Ball load equilibrium with centrifugal force.
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The radial stiffness from Eq. (25) is compared with the numerical data from Ref. [17] and a
commercial bearing code for model validation. The bearing parameters are given as: Fz (axial
preload)=540N, Fr (radial load)=500N, ao ¼ 15�; dm ¼ 0:09m, and n ¼ 20: Fig. 7 shows the
radial stiffness for steel and ceramic ball bearings. A solid line indicates the numerical results from
our code, the circle indicates data from Ref. [17] and the triangle data is from the commercial
bearing code, BASDREL by Crawford Meeks [20]. The results show a good match with data from
two references.

4. Simulation results and discussion

Rotor drop simulations are conducted to illustrate implementation of the high-fidelity CB
model and use of the performance indices to identify a good CB design. Numerical integration of
the EOM for the flywheel rotor system in Appendix A is performed. The CB dimension and
material characteristics are listed in Table 1. Fig. 8 shows the CB stiffness versus inner race
spinning speed for different axial preloads. The stiffness is seen to increase as the axial preload
increases and it decreases as the inner race spin speed increases.
Table 2 lists the specifications for the shaft, flywheel, motor and CBs. The flywheel and motor

have 0.00254mm imbalance eccentricity with 90� phase difference. When a simulation starts, the
flywheel system spins at 40 000 r.p.m. and is axially (Z-axis) dropped down to the bottom CB by
gravity and moves from the reference frame center with the initial translational velocity 5 cm/s in
X and Y directions. The radial clearance of the CBs is half the MB clearance. A 444.8N X-axis
MB static side load may be applied to the shaft depending on the simulation case.
A numerical solution is obtained using a variable time-step fourth order Runge–Kutta

integration algorithm. The total integration time is 1 s and the display time step is 4� 10�5 s. To
treat contact status, calculate the relative distance, s between the rotor and inner race geometric
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Fig. 7. Bearing radial stiffness comparison (solid, present approach; J, Ref. [17]; D, BASDREL): (a) steel ball,

(b) ceramic ball.
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centers from Eq. (2). If the distance is greater than the nominal CB clearance, the normal and
tangential contact forces are applied to the rotor and inner race. If the distance is less than the
clearance, the contact forces become zero in the simulation program. Theoretically, rolling
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Table 1

Specifications of catcher bearings

Dimension Specification

Geometric specification

Bore diameter, BD 1.7 cm

Outside diameter, OD 3.5 cm

Width 1.0 cm

Inner and outer race groove radius 2.083 and 2.144mm

Number of balls 16

Diameter of a ball 3.969mm

Initial contact angle 15�

Axial preload 88.964N

Number of rows 2

Material specification

Density of ball: ceramic 3.2 g/cm3

Density of inner and outer race: steel 7.8 g/cm3

Elastic modulus of ball 290GPa

Poisson ratio of ball 0.26

Elastic modulus of inner and outer race 208GPa

Poisson ratio of inner and outer race 0.3

Lubricant

Viscosity 50Cst

Fig. 8. CB stiffness depending on inner race speed and axial preload (J, 89N; � , 222N; }, 356N): (a) radial

stiffness, (b) axial stiffness.
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happens when the tangential velocities of the rotor and inner race are exactly the same, but
numerically, this may not happen. Furthermore, the tangential force is very high when backward
whirl happens and it changes direction whenever the relative tangential velocity changes direction.
Thus a very small boundary (1E-8) is added around zero relative velocity and if the relative
velocity is within this boundary, the rolling condition is applied to determine tangential contact
force and if the relative velocity exceeds this boundary, a slipping condition is applied.
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Table 2

Specifications of simulation models

Dimension Specification

Shaft

Mass 2.39 kg

Polar MOI, Ips 0.0011 kgm2

Transverse MOI, Its 0.0087 kgm2

Radial clearance of MBs 0.508mm

Radial clearance of CBs 0.254mm

Flywheel

Mass 26.71 kg

Polar MOI, Ipf 0.7237 kgm2

Transverse MOI, Itf 0.4460 kgm2

Unbalance eccentricity, ef 0.00254mm

Motor

Mass 2.65 kg

Polar MOI, Ipm 0.0060 kgm2

Transverse MOI, Itm 0.0033 kgm2

Unbalance eccentricity, em 0.00254mm

Total

Polar MOI, Ipt 0.7308 kgm2

Initial spinning speed, p 40 000 r.p.m.

Catcher bearing

Mass of inner race 0.104 kg

Mass of outer race 0.615 kg

Polar MOI of inner race, Ipb 1.24E-4 kgm2

Axial initial height, ddrop 0.381mm

Damping coefficient of CB, Cba and Cb 200N s/m

Axial support stiffness, Ksa 3.5E+6N/m

Axial support damping coefficient, Csa 1.75E+4N s/m

Radial support stiffness, Ks 3.5E+6N/m

Radial support damping coefficient, Cs See Table 3

Dynamic friction coefficient of CB See Table 3

Static friction coefficient of CB See Table 3

Axial preloads, Fa See Table 3

X-axis side loads from MBs, Fsl See Table 3
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In order to investigate the effects of the CB design parameters on the rotor dynamics, the
parameter studies are performed for CB axial preload ðFaÞ; friction coefficient of the shaft/inner
race interface ðms;dÞ; the radial support damping coefficient of the damper liner ðCsÞ; and X-axis
side loads from the MBs ðFslÞ: The last parameter may be useful in the event that MB control is
lost, however the MB actuator remains operative.
The following performance indices (PIs) are developed to compare and characterize the

simulation responses: (1) peak radial normal contact force (N); (2) peak axial normal contact
force (N); (3) peak impulse due to radial normal contact force (N s); (4) peak impulse due to axial
normal contact force (N s); (5) shaft speed decrease (r.p.m.); (6) final inner race speed (r.p.m.); (7)
maximum power loss due to drag torque (W); (8) maximum power loss due to contact force with
rotor (W); (9) maximum total power loss (W); (10) maximum heat energy due to drag torque (J);
(11) maximum heat energy due to contact force with rotor (J); (12) maximum total heat energy (J);
(13) final rotor whirl rate at top CB (r.p.m.); (14) final rotor whirl rate at bottom CB (r.p.m.); (15)
minimum air gap at MBs (mm).
The first PI indicates the maximum contact normal force on either of the top and bottom inner

races on X � Y plane, while the second PI is the maximum axial contact normal force on the
bottom CB. These two PIs are important for CB life prediction. The third and fourth PIs are
impulses due to the PI1 and PI2. The fifth and sixth indices represent the shaft speed decrease and
increase of the CB speed, respectively. The seventh to 12th indices denote the maximum power
loss due to bearing drag torque and contact friction with rotor, and the maximum heat energy,
which is the time integral of the power loss. The 13th and 14th indices show the final shaft whirl
rate at the CBs. The minimum air gap at MBs, the last index, represents how much radial air gap
is available at the MB locations (how safe MB stators are), which is equal to 0.508mm minus the
maximum radial motion of the rotor at the MBs.
Table 3 shows the simulation cases presented here. The PIs from the last four simulations of

Case I will be compared with those of Case IV to investigate the effects of side load.
Figs. 9–20 show the simulation results for Case I-2 in Table 3. The rotor motions at the CB

locations are plotted in Figs. 9 and 10. Fig. 9 shows that the rotor motion is damped out by the
damper liner. From the orbit plot, it is observed that the X-axis side loads mainly move the rotor
along the X-axis. The dynamic responses of the inner and outer races are shown in Figs. 11
and 12.
Fig. 13 shows the angular velocities of the rotor shaft and inner races, and rotor whirl rate. In

Fig. 13(b), the bottom CB is accelerated faster than the top one because the axial and radial
contacts produce more driving torque. It can be noticed from Fig. 13(c) and (d) that the
rotor whirl rate reverses sign because it oscillates on the inner races along the Y direction (refer to
Fig. 10).
The angles at contacts, and normal and tangential (friction) contact forces at the inner

races are presented in Fig. 14. Fig. 14 shows that contact is intermittent. The variable
integration time step is found to decrease much smaller than the contact duration during
contact events. The radial normal contact force reaches 3000N for the first hit and remains under
600N.
Fig. 15 shows the impulse due to the normal contact force. Power loss in the CBs is presented in

Fig. 16. It can be noticed that the power loss due to the friction force between the rotor and inner
race is dominant compared with the power loss due to drag torque.
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Fig. 9. Dynamic response of the rotor (a) at the top CB in X-axis, (b) at the top CB in Y-axis, (c) at the bottom

CB in X-axis, and (d) at the bottom CB in Y-axis.

Table 3

Simulation cases

Simulation no. ms; md Fa (N) Cs (N s/mm) Fsl (N)

Case I: friction coefficient effects

I-1 0.2, 0.05 88.96 87.6 444.82

I-2 0.3, 0.1 88.96 87.6 444.82

I-3 0.4, 0.2 88.96 87.6 444.82

I-4 0.45, 0.25 88.96 87.6 444.82

I-5 0.5, 0.3 88.96 87.6 444.82

Case II: axial preload effects

II-1 0.4, 0.2 88.96 87.6 0

II-2 0.4, 0.2 222.41 87.6 0

II-3 0.4, 0.2 355.86 87.6 0

Case III: support damper effects

III-1 0.3, 0.1 88.96 0.876 0

III-2 0.3, 0.1 88.96 1.75 0

III-3 0.3, 0.1 88.96 3.50 0

III-4 0.3, 0.1 88.96 8.76 0

III-5 0.3, 0.1 88.96 17.5 0

III-6 0.3, 0.1 88.96 43.8 0

III-7 0.3, 0.1 88.96 87.6 0

Case IV: side load effects

IV-1 0.3, 0.1 88.96 87.6 0

IV-2 0.4, 0.20 88.96 87.6 0

IV-3 0.45, 0.25 88.96 87.6 0

IV-4 0.5, 0.3 88.96 87.6 0

G. Sun et al. / Journal of Sound and Vibration 269 (2004) 933–963 947



Fig. 17 shows the heat energy in the CBs categorized by sources: drag torque and friction force.
The friction force between the rotor and inner race is again the major source for the total heat
energy. The total energy transferred to the CBs including kinetic energy of the inner races, and
dissipated energy by the damper liner and the flexible hubs is compared to the kinetic energy drop
of the spinning flywheel system in Fig. 18. Fig. 18(b) shows the consistent match with about 4 J
difference at the final time. Fig. 19 shows the axial motions of the shaft, inner race and outer race
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Fig. 10. Orbit plot of the rotor (dashed, CB clearance): (a) at the top CB and (b) at the bottom CB.

Fig. 11. Dynamic response of the inner race (a) at the top CB in X-axis, (b) at the top CB in Y-axis, (c) at the bottom

CB in X-axis, and (d) at the bottom CB in Y-axis.
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which go to steady state after an overshoot. The axial normal force on the bottom CB and the
corresponding impulse are shown in Fig. 20.
Figs. 21 and 22 show the dynamic responses for Case I-5 with ms ¼ 0:5 and md ¼ 0:3: The orbit

plot of the rotor at CBs in Fig. 21 show that the rotor whirls due to high friction coefficient even
under the side load.
It can be observed from Fig. 22 that the rotor whirl rate transiently reaches �40 000 r.p.m. and

then the high-frequency backward whirl is diminished by the support damping.
Table 4 shows the PIs obtained from the simulation results for Case I. For the PIs 13 and 14,

these results are for the end of the 1-s transient simulation. It is observed that the peak radial
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Fig. 13. (a) Rotor spin speed, (b) inner race spin speed (solid, top CB; dashed, bottom CB), rotor whirl rate (c) at the

top CB and (d) at the bottom CB.

Fig. 12. Dynamic response of the outer race (a) at the top CB in X-axis, (b) at the top CB in Y-axis, (c) at the bottom

CB in X-axis, and (d) at the bottom CB in Y-axis.

G. Sun et al. / Journal of Sound and Vibration 269 (2004) 933–963 949



contact force, the first PI, and the peak impulse, the third PI, rapidly increase between Case I-4
and Case I-5. This is because the high frequency backward whirl occurs in Case I-5. The
maximum power loss, the 9th PI, and the maximum heat energy, the 12th PI, increase as the
friction coefficient increases. The minimum air gap at the MBs, the last PI, significantly decreases
between Case I-4 and Case I-5. Although the peak radial contact force for Case I-5 is 9387N, this
diminishes to 908N at the end of the 1 s simulation interval. Figs. 23 and 24 summarize the effects
of dynamic friction coefficient on the key PIs.
The axial preload is an important design parameter in CB design. From Fig. 8, it was verified

that the more the axial preload is applied the more bearing stiffness is obtained. Table 5 shows the
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Fig. 15. Impulse due to radial normal force (a) at the top CB and (b) at the bottom CB.

Fig. 14. Angle at contact (a) in the top CB and (d) in the bottom CB, contact normal force (b) in the top CB and (e) in

the bottom CB, and contact tangential force (c) in the top CB and (f) in the bottom CB.
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PIs from the simulation results for Case II. The peak radial contact force and the corresponding
peak impulse are increased as the axial preload is increased. The minimum MB air gap is also
increased as more preload is applied but not significantly.
The total power loss and energy loss, the 9th and 12th PIs, increase as the axial preload is

increased. Since more preload induces more drag torque the appropriate axial preload amount is
important in the sense that the power loss due to an excessive preload can result in bearing seizure
and too little preload can soften the CB and cause loss in the MB air gap. The key PIs versus axial
preload are shown in Figs. 25 and 26.
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Fig. 17. (a) Heat energy loss due to drag torque in CBs, (b) heat energy loss due to contact tangential force in CBs,

(c) total heat energy loss in CBs.

Fig. 16. (a) Power loss due to drag torque in CBs, (b) power loss due to contact tangential force in CBs, (c) total power

loss in CBs.
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Fig. 19. Axial motion of shaft, inner race and outer race (solid, rotor; dashed, inner race; dashdot, outer race).

Fig. 18. (a) Energy balance, (b) scaled plot (solid, flywheel energy drop; dashed, total energy transferred to CBs).

Fig. 20. (a) Axial normal force, (b) impulse due to axial normal force.
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A PI summary for Case III is shown in Table 6. The peak contact force decreases up to Case
III-3 and increases as shown in Fig. 27(a). This illustrates that a given rotor drop system has an
optimum damping. This result is consistent with what Ishii and Kirk pointed out in Ref. [2]. The
peak impulse in Fig. 27(b) has a similar trend as the peak force but it has a minimum value at Case
III-5. The minus minimum air gap obtained from Case III-1 indicates that the rotor hits the MB
stator. Fig. 27(c) shows that the air gap sharply increases from III-1 to III-5 and is nearly
unaffected by Cs above 10N s/mm.
As shown in Fig. 28, the total power loss is decreased until Case III-3 and is sharply increased

after that due to the friction force between the rotor and CBs, while the energy loss has the
minimum value at Case III-5 and gradually increases. Several design objectives can be considered
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Fig. 21. Orbit plot of the rotor for Case I-5 (dashed, CB clearance): (a) at the top CB and (b) at the bottom CB.

Fig. 22. Rotor whirl rate for Case I-5: (a) at the top CB and (b) at the bottom CB.
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to find an optimum damping. Enough air gap at the MBs has to be guaranteed, and the peak
contact force and impulse have to be reduced. The minimum peak contact force is obtained in
Case III-3 but the maximum air gap is not. Minimizing heat energy is another design objective.
The final whirl direction and amount are also important to avoid excessive backward whirl. Cases
III-1, 2, 6, and 7 results showed backward whirls with over 1000 r.p.m. at both CBs.
Figs. 29 and 30 compare the PIs with and without side loads. From Fig. 29(a), it can be noticed

that the peak normal force is gradually increased in the case without side loads but in the case with
side loads, it is almost constant before backward whirl occurs. The peak impulse is higher, the
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Table 4

Performance indices for Case I

PI I-1 I-2 I-3 I-4 I-5

1 3253N 3264 3268 3256 9387

2 1294N 1311 1296 1293 1295

3 244.15N s 243.66 242.78 262.61 471.85

4 311.13N s 311.16 311.16 311.15 311.48

5 4.34 r.p.m. 8.66 13.52 15.51 17.17

6 13 762 r.p.m. 29 208 39 283 39 424 39 441

7 153.4W 538.6 1042.4 1303.3 1522.2

8 10 509W 20 993 41 783 52 018 88 698

9 10 684W 21 170 41 965 52 204 90 096

10 63.3 J 216.7 575.0 707.7 1283.4

11 1177.2 J 1884.9 2280.0 2369.9 2156.2

12 1241.6 J 2102.6 2856.2 3079.6 3471.6

13 653 r.p.m. 607 1100 �1839 822

14 �1222 r.p.m. �920 �37 638 �1776

15 0.183mm 0.182 0.174 0.173 0.139

Fig. 23. For Case I, (a) peak radial contact force versus md ; (b) peak impulse versus md ; (c) minimum air gap versus md :
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minimum air gap is lower and more heat energy is generated in the case without side loads. More
heat energy in the CBs is generated in the case without side loads.

5. Conclusions

The detailed CB mathematical model, which includes power loss, a Hertzian load–deflection
non-linear relationship and inner race speed-and-axial preload-dependent bearing stiffness, was
developed in this paper. Inner race speed and axial preload-dependent bearing stiffness is an
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Fig. 24. For Case I, (a) maximum power loss versus md ; (b) maximum heat energy versus md :

Table 5

Performance indices for Case II

PI II-1 II-2 II-3

1 4917N 5810 6324

2 1316N 1461 1518

3 550.74N s 554.12 560.53

4 311.16N s 311.17 311.16

5 16.93 r.p.m. 17.07 17.25

6 39 708 r.p.m. 39 699 39 688

7 1389.0W 1446.3 1512.6

8 38 992W 40 593 40 812

9 39 502W 41 172 41 415

10 1228.1 J 1266.4 1316.3

11 2105.1 J 2112.0 2119.6

12 3357.4 J 3403.6 3460.9

13 �2143.9 r.p.m. �1729.6 �1218.4

14 �2249.1 r.p.m. �1148.2 �3346.7

15 0.22mm 0.222 0.23
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important factor in high speed CB applications, i.e. the accelerated inner race speed in this study
reached about 40 000 r.p.m. The drop test of the vertical shaft rotor with the flywheel and motor
combined was numerically performed with a variety of design parameters of CBs such as dynamic
friction coefficient, axial preload, support damping, and side load and analyzed using 15
performance indices (PI).
The simulation results show that as the friction coefficient is increased, the peak normal force

and the corresponding impulse increase, while the minimum air gap decreases. Fully developed
backward whirl occurs at md ¼ 0:3 even with the side loads.
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Fig. 25. For Case II, (a) peak radial contact force versus axial preload, (b) peak impulse versus axial preload,

(c) maximum air gap versus axial preload.

Fig. 26. For Case II, (a) maximum power loss versus axial preload, (b) maximum heat energy versus axial preload.
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The power loss and heat energy increases as the friction coefficient increase. The peak normal
force and impulse increase, and a slightly more minimum air gap is obtained as the axial preload
is increased. The peak normal force decreases and then increases after having a minimum
value at 3.50N s/mm as the support damping is increased. The peak impulse has the same trend as
the peak normal force but has a minimum value at a support damping of 17.5N s/mm. The
minimum air gap increases and becomes almost constant above Cs ¼ 43:8N s/mm. The side
loads help reduce the peak normal force, impulse and heat energy but result in less minimum air
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Table 6

Performance indices for Case III

PI III-1 III-2 III-3 III-4 III-5 III-6 III-7

1 1078.5N 834.9 813.7 996.7 1242.4 1710.3 2012.6

2 1310.2N 1325.7 1313.9 1319.5 1323.4 1324.8 1321.5

3 665N s 454 283 88.5 65.3 244.4 467.5

4 311.16N s 311.16 311.16 311.16 311.16 311.16 311.16

5 15.17 r.p.m. 12.72 9.88 5.70 5.18 8.63 13.03

6 38793 r.p.m. 38 794 33 923 22 548 21 266 29 549 39 392

7 1295.8W 997.4 686.3 290.3 258.2 550.4 1057.8

8 5692.9W 5363.9 5120.1 5144.6 6851.2 9480.9 11 933

9 5699.9W 5368.2 5122.1 5146.2 6919.1 9545.1 11 998

10 634.1 J 415.2 243.1 123.1 106.3 183.8 451.4

11 2310.9 J 2236.5 1991.3 1347.1 1242.1 1874.7 2201.6

12 2953.6 J 2658.0 2238.4 1471.6 1349.3 2062.5 2662.6

13 �2913 r.p.m. �1319 �3389 288 �945 �1869 �3427

14 �1459 r.p.m. �2874 �590 �1247 32 �4299 �2028

15 0.05mm 0.073 0.126 0.176 0.202 0.220 0.227

Fig. 27. For Case III, (a) peak radial contact force versus support damping, (b) peak impulse versus support damping,

(c) maximum air gap versus support damping.
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gap. In this paper, only results for a soft support stiffness (Ks ¼ 3:5Eþ 6 N/m) are reported
but in rigid support stiffness cases (Ks ¼ 8:76Eþ 8 N/m), the side loads make the minimum
air gap increase because they prevent the rotor from entering into a destructive backward
whirl.
Although the model utilized in this study is significantly more detailed than its counterparts in

previous CB papers, it will be enhanced to include individual ball motion, stress calculation on
balls, thermal expansion, temperature-dependent lubricant viscosity, wear and life prediction in
our planned future work. In addition, the analytical results will be benchmarked against test
results from a recently completed, experimental CB rig at NASA Glenn.
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Fig. 28. For Case III, (a) maximum power loss versus support damping, (b) maximum heat energy versus support

damping.

Fig. 29. For Case IV (J, with side loads; � , without side loads), (a) peak radial contact force versus md ; (b) peak
impulse versus md ; (c) minimum air gap versus md :
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Appendix A. Equations of motion for the simulation model

From Fig. 1, the motor motion is described as

Mm .xm ¼ � Kmtxxðxm � xr � d1yryÞ � Cmtxð ’xm � ’xr � d1 ’yryÞ

� Kmtxyðym � yr þ d1yrxÞ þ Mmemo2
z cosðoztÞ;

Mm .ym ¼ � Kmtyyðym � yr þ d1yrxÞ � Cmtyð ’ym � ’yr þ d1
’yrxÞ

� Kmtyxðxm � xr � d1yryÞ þ Mmemo2
z sinðoztÞ;

Imt
.ymx ¼ � Impoz

’ymy � Kmrxxðymx � yrxÞ

� Cmrxð’ymx � ’yrxÞ � Kmrxyðymy � yryÞ;

Imt
.ymy ¼ Impoz

’ymx � Kmryyðymy � yryÞ � Cmryð’ymy � ’yryÞ � Kmryxðymx � yrxÞ;

where Kmtxx and Kmtyy are translational stiffness of the flexible hub, Cmtx and Cmty are
translational damping of the hub, Kmtxy and Kmtyx are translational cross-coupled stiffness, Kmrxy

and Kmryx are rotational cross-coupled stiffness, and d1 is the distance between the motor and
rotor mass centers.
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Fig. 30. For Case IV (J, with side loads; � , without side loads), (a) maximum power loss versus md ; (b) maximum

heat energy versus md :
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Similarly, the flywheel motion is described as

Mf .xf ¼ � Kftxxðxf � xr � d2yryÞ � Cftxð ’xf � ’xr � d2
’yryÞ

� Kftxyðyf � yr þ d2yrxÞ � Mf ef o2
z sinðoztÞ;

Mf .yf ¼ � Kftyyðyf � yr þ d2yrxÞ � Cftyð ’yf � ’yr þ d2
’yrxÞ

� Kftyxðxf � xr � d2yryÞ þ Mf ef o2
z cosðoztÞ;

Ift
.yfx ¼ �Ifpoz

’yfy � Kfrxxðyfx � yrxÞ � Cfrxð’yfx � ’yrxÞ � Kfrxyðyfy � yryÞ;

Ift
.yfy ¼ Ifpoz

’yfx � Kfryyðyfy � yryÞ � Cfryð’yfy � ’yryÞ � Kfryxðyfx � yrxÞ;

where d2 is the distance between the flywheel and rotor mass centers.
The equations of motion (EOMs) for the rotor are

Mr .xr ¼Kmtxxðxm � xr � d1yryÞ þ Cmtxð ’xm � ’xr � d1
’yryÞ

þ Kmtxyðym � yr þ d1yrxÞ þ Kftxxðxf � xr � d2yryÞ

þ Cftxð ’xf � ’xr � d2 ’yryÞ þ Kftxyðyf � yr þ d2yrxÞ

� Fn1 cosða1Þ þ Ft1 sinða1Þ � Fn2 cosða2Þ þ Ft2 sinða2Þ þ Fsl ;

Mr .yr ¼Kmtyyðym � yr þ d1yrxÞ þ Cmtyð ’ym � ’yr þ d1 ’yrxÞ

þ Kmtyxðxm � xr � d1yryÞ þ Kftyyðyf � yr þ d2yrxÞ

þ Cftyð ’yf � ’yr þ d2
’yrxÞ þ Kftyxðxf � xr � d2yryÞ

� Fn1 sinða1Þ � Ft1 cosða1Þ � Fn2 sinða2Þ � Ft2 cosða2Þ;

Irt
.yrx ¼ � Irpoz

’yry � d1½Kmtyyðym � yr þ d1yrxÞ þ Cmtyð ’ym � ’yr þ d1 ’yrxÞ

þ Kmtyxðxm � xr � d1yryÞ� � d2½Kftyyðyf � yr þ d2yrxÞ

þ Cftyð ’yf � ’yr þ d2
’yrxÞ þ Kftyxðxf � xr � d2yryÞ�

þ l1½�Fn1 sinða1Þ � Ft1 cosða1Þ� � l2½�Fn2 sinða2Þ � Ft2 cosða2Þ�

þ Kmrxxðymx � yrxÞ þ Cmrxð’ymx � ’yrxÞ þ Kmrxyðymy � yryÞ

þ Kfrxxðyfx � yrxÞ þ Cfrxð’yfx � ’yrxÞ þ Kfrxyðyfy � yryÞ;

Irt
.yry ¼ Irpoz

’yrx þ d1½Kmtxxðxm � xr � d1yryÞ

þ Cmtxð ’xm � ’xr � d1
’yryÞ þ Kmtxyðym � yr þ d1yrxÞ�

þ d2½Kftxxðxf � xr � d2yryÞ

þ Cftxð ’xf � ’xr � d2 ’yryÞ þ Kftxyðyf � yr þ d2yrxÞ�

� l1½�Fn1 cosða1Þ þ Ft1 sinða1Þ� þ l2½�Fn2 cosða2Þ þ Ft2 sinða2Þ�

þ Kmryyðymy � yryÞ þ Cmryð’ymy � ’yryÞ þ Kmryxðymx � yrxÞ

þ Kfryyðyfy � yryÞ þ Cfryð’yfy � ’yryÞ þ Kfryxðyfx � yrxÞ;

Ip
.yz ¼ �ðFt1 þ Ft2ÞRr � Tza;
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where Fn1 and Fn2 are the radial normal contact forces between the rotor and inner race, Ft1 and
Ft2 are the friction forces induced by the contact force, l1 and l2 are the distances between the rotor
mass center and CBs, and Ip is the polar moment of inertia of the total flywheel system.
From Fig. 2, the EOMs for the top CB are

Mi1 .xi1 ¼ Fn1 cosða1Þ � Ft1 sinða1Þ � Cb1ð ’xi1 � ’xo1Þ � Kb1ðxi1 � xo1Þ;

Mi1 .yi1 ¼ Fn1 sinða1Þ þ Ft1 cosða1Þ � Cb1ð ’yi1 � ’yo1Þ � Kb1ðyi1 � yo1Þ;

Mo1 .xo1 ¼ Cb1ð ’xi1 � ’xo1Þ þ Kb1ðxi1 � xo1Þ � Ks1xo1 � Cs1 ’xo1;

Mo1 .yo1 ¼ Cb1ð ’yi1 � ’yo1Þ þ Kb1ðyi1 � yo1Þ � Ks1yo1 � Cs1 ’yo1;

Ipb
.yi1 ¼ Ft1Rb � Td1:

The EOMs for the bottom CB are

Mi2 .xi2 ¼ Fn2 cosða2Þ � Ft2 sinða2Þ � Cb2ð ’xi2 � ’xo2Þ � Kb2ðxi2 � xo2Þ;

Mi2 .yi2 ¼ Fn2 sinða2Þ þ Ft2 cosða2Þ � Cb2ð ’yi2 � ’yo2Þ � Kb2ðyi2 � yo2Þ;

Mo2 .xo2 ¼ Cb2ð ’xi2 � ’xo2Þ þ Kb2ðxi2 � xo2Þ � Ks2xo2 � Cs2 ’xo2;

Mo2 .yo2 ¼ Cb2ð ’yi2 � ’yo2Þ þ Kb2ðyi2 � yo2Þ � Ks2yo2 � Cs2 ’yo2;

Ipb
.yi2 ¼ Ft2Rb � Td2 þ Tza;

where Cb1;2 and Kb1;2 are the CB damping and stiffness, Cs1;2 and Ks1;2 are the support damping
and stiffness, and Rb is the bore radius of the CB. The parameter Kb1;2 is calculated according to
the axial preload and inner race speed.
From Fig. 3, the axial model is developed as

Mm .zm ¼ �Kmaðzm � zrÞ � Cmað’zm � ’zrÞ þ Mmg;

Mf .zf ¼ �Kfaðzf � zrÞ � Cfað’zf � ’zrÞ þ Mf g;

Mr .zr ¼ Kmaðzm � zrÞ þ Cmað’zm � ’zrÞ þ Kfaðzf � zrÞ þ Cfað’zf � ’zrÞ � Fcz þ Mrg;

Mi .zi ¼ �Kbaðzi � zoÞ � Cbað’zi � ’zoÞ þ Fcz;

Mo .zo ¼ Kbaðzi � zoÞ þ Cbað’zi � ’zoÞ � Ksazo � Csa ’zo;

where Kba is the axial stiffness of the bottom CB, which is also calculated from the axial preload
and inner race speed.

Appendix B. Nomenclature

C damping
F contact force
I moment of inertia
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K stiffness
M mass
e unbalance eccentricity
a contact angle

Subscripts

a axial
b bearing
d drag
f flywheel
i inner race
m motor
n normal
o outer race
p polar
r rotor or rotational
s support system
t transverse or tangential
1 and 2 top and bottom
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